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A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-
diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be
applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear
Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction
equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation
time. Detailed simulations of these equations are performed, and it is found that the numerical results agree
well with the analytical solutions and the numerical solutions reported in previous studies.
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I. INTRODUCTION

The lattice Boltzmann method �LBM� is a new technique
for simulating fluid flows and modeling complex physics in
fluids �1–3�. Compared with the conventional computational
fluid dynamics approach, the LBM is easy for programming,
intrinsically parallel, and it is also easy to incorporate com-
plicated boundary conditions such as those in porous media.
In the past years, the lattice Bhatnagar-Gross-Krook �LBGK�
model, the most popular LBM, has achieved great success in
a variety of fields, ranging from simple laminar flows to
thermal flows �4–6�, compressible flows �7�, porous media
�8,9�, blood flow �10�, particle suspensions �11�, multicom-
ponent and multiphase systems �12,13�, and so on. The LBM
also shows potentials to simulate the nonlinear systems, such
as reaction-diffusion equation �14–16�, convection-diffusion
equation �CDE� �5,17–21�, Burgers equation �22�, and wave
equation �23�. However, they are commonly limited to iso-
tropic diffusion. Recently, the LB models for advection and
anisotropic dispersion equation have been proposed �24–26�,
among them the model by Ginzburg �26� is generic. In addi-
tion, Sman and Ernst studied the LBM for CDE deeply, and
presented serval LB schemes �see Refs. �5,20� and references
therein�. The schemes on rectangular or irregular lattices de-
veloped by them are promising. It can be found that to re-
cover the right macroscopic CDE, the appropriate assump-
tions are usually needed in the existing LB models.

Most of the existing LB models are used for real nonlin-
ear systems. Since the mid 1990s, several types of quantum
lattice gases and quantum LBM have been proposed based
on quantum-computing ideas to model some real and com-
plex mathematical-physical equations, such as the Dirac
equation, Schrödinger equation, Gross-Pitaevskii equation,
Burgers equation, KdV equation �27–36�, etc. Although these
models are not in the classical LBM framework and the mul-

tidimensional version of these models needs to be designed
carefully �35�, they bring us an interesting issue: how does
the classical LBM work when used to model complex equa-
tions? Recently the LBM was applied to solve the one-
dimensional nonlinear Schrödinger equation �NLSE� �37� us-
ing the idea of quantum lattice-gas model �30,31� to treat the
reaction term. The simulation results show that the accuracy
of the LB schemes is better than or at least comparable to
that of the Crank-Nicolson finite difference scheme. In Ref.
�38�, motivated by the work in Ref. �37�, LBM for
n-dimensional �nD� CDE with a source term was directly
applied to solve some nonlinear complex equations, includ-
ing the NLS equation, coupled NLS equations, Klein-Gordon
equation, and coupled Klein-Gordon-Schrödinger equations,
by adopting a complex-valued distribution function and re-
laxation time. The simulations in Ref. �38� show that the
LBM may be also an effective numerical solver for complex
nonlinear systems.

However, the existing LB models are mainly for evolu-
tionary equations with a linear convection or diffusion term.
Although some recent LB models �24,26� can simulate the
CDE with nonlinear convection or diffusion term, the addi-
tional assumptions on the convection and related terms are
needed. In this paper, we present a LBGK model for a
convection-diffusion equation with nonlinear convection and
isotropic-diffusion terms through selecting equilibrium dis-
tribution function properly, and there is no additional as-
sumption on the convection and diffusion terms. The model
can be applied to the common real and complex-valued non-
linear evolutionary equations, such as NLSE, complex
Ginzburg-Landau equation �CGLE�, Burgers-Fisher equation
�BFE�, nonlinear heat conduction equation �NHCE�, and
sine-Gordon equation �SGE�, by using real and complex-
valued distribution function and relaxation time. Detailed
simulations of these equations are performed, and numerical
results agree well with the analytical and numerical solutions
in the literature.

The rest of the paper is organized as follows. In Sec. II,
the LBGK model for nonlinear convection-diffusion equa-
tion �NCDE� is presented and some of its special cases are
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discussed, where the two schemes of the model for NCDE
with nonlinear diffusion term are given. In Sec. III, the
implemental version of the LBGK model for complex-valued
NCDE is discussed. Numerical tests of the LBGK model
are made in Sec. IV, and finally a brief summary is given in
Sec. V.

II. LBGK MODEL

The nD NCDE with a source term considered in this pa-
per can be written as

�t� + � · B��� = � · �� � D���� + F�x,t� , �1�

where � is the gradient operator with respect to the spatial
coordinate x in n dimensions. � is a scalar function of posi-
tion x and time t. �=��x , t� is the diffusion coefficient. B
and D are the known differential functions of � and F�x , t� is
the source term.

There is relatively less work on LB models for solving
Eq. �1�. In Ref. �26�, two LB models for generic advection
and anisotropic-dispersion equation were proposed, which
can be used to solve Eq. �1�. However, to recover the mac-
roscopic equation, the additional assumptions �Secs. 4.3.2
and 5.2 in Ref. �26�� on the convection and related terms are
needed. These assumptions may not be satisfied. For ex-
ample, they are not satisfied for the case B���=�2I and for
example 4.3 below.

Our LBGK model is based on the DnQb lattice �2� with b
velocity directions in nD space, and we use one of the LBGK
schemes in Ref. �21� for treating the source term. The evo-
lution equation of the distribution function in the model
reads

f j�x + c j�t,t + �t� = f j�x,t� −
1

�
�f j�x,t� − f j

eq�x,t��

+ �tFj�x,t� +
��t2

2
�tFj�x,t� ,

j = 0, . . . ,b − 1, �2�

where �c j , j=0, . . . ,b−1� is the set of discrete velocity direc-
tions, �t is the time step, � is the dimensionless relaxation
time, f j

eq�x , t� is the equilibrium distribution function, and
Fj�x , t� the distribution function for the source term.

Note that � in Eq. �2� is a real parameter, corresponding to
the standard LBGK model for �=0 and a scheme in Ref. �21�
for �=1, respectively. When �=1, the additional term in the
recovered macroscopic equation can be removed �see be-
low�. Other LBGK schemes in Ref. �21� can also be used.
For simplicity, we only use the simpler one.

To solve Eq. �1� using the LB equation �2� without addi-
tional assumptions, we must give appropriate f j

eq�x , t� and
Fj�x , t�. As pointed in the general parallel analysis of LBM
for convection diffusion and fluid flow in Ref. �5�, reason-
able constraints of moments of the equilibrium distribution
f j

eq�x , t� must be satisfied. Keeping this in mind and follow-
ing the common LBGK model, we take the equilibrium dis-
tribution function as

f j
eq = � j�� +

c j · B

cs
2 +

�C − cs
2�I�:�c jc j − cs

2I�
2cs

4 � , �3�

where I is the unit tensor, C���=C0���+cs
2D���I is the sec-

ond order moment of f j
eq, and C0��� is a tensor function of

�, which will be determined later. � j are weights and cs, the
so called sound speed in the LBM, is related to the particle
speed c and � j by 	 j� jc jc j =cs

2I, and they all depend on the
lattice model used, where c=�x /�t and �x is the lattice
spacing. Note that the second term in C��� is similar to that
in the Cahn-Hilliard model �17� with D��� equal to chemical
potential, while C0��� is a new one which is used to remove
some additional terms in the recovered macroscopic equa-
tion.

The parameters are given as follows: for the D1Q3 model,
�c0 ,c1 ,c2�= �0,c ,−c�, �0=2 /3, �1=�2=1 /6; for the D2Q9
one, �c j , j=0, . . . ,8�= ��0,0� , ��c ,0� , �0, �c� , ��c , �c��,
�0=4 /9, �1
4=1 /9, �5
8=1 /36, then cs

2=c2 /3 for both of
them. � is determined by �=	 j f j, and f j and f j

eq satisfy

	
j

f j = 	
j

f j
eq = � ,

	
j

c j f j
eq = B���,	

j

c jc j f j
eq = C��� . �4�

The corresponding source term Fj is taken as

Fj = � jF�1 + 	
c j · B����

cs
2 � �5�

such that 	 jFj =F, 	 jc jFj =	FB����, where B�= dB
d� , and 	 is

another parameter to be determined.
To derive the macroscopic equation �1�, the Chapman-

Enskog expansion in time and space is applied:

f j = f j
eq + 
f j

�1� + 
2f j
�2�,

F = 
F�1�, �t = 
�t1
+ 
2�t2

, � = 
�1, �6�

where 
 is a small expansion parameter. Using Eq. �6�, the
first formula in Eq. �4�, and Eq. �5�, we have

	
j

f j
�k� = 0�k � 1� ,

	
j

Fj
�1� = F�1�, 	

j

c jFj
�1� = 	F�1�B���� , �7�

where Fj
�1�=� jF

�1��1+	
c j·B����

cs
2 �.

By applying Taylor expansion to Eq. �2�, we get

Djf j +
�t

2
Dj

2f j + ¯ = −
1

��t
�f j − f j

eq� + Fj +
��t

2
�tFj�x,t� ,

�8�

where Dj =�t+c j ·�. Denote D1j =�t1
+c j ·�1. Substituting Eq.

�6� into Eq. �8� and treating the terms in order of 
 and 
2

separately gives

D1j f j
eq = −

1

��t
f j

�1� + Fj
�1�, �9a�
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�t2
f j

eq + D1j f j
�1� +

�t

2
D1j

2 f j
eq = −

1

��t
f j

�2� +
��t

2
�t1

Fj
�1�.

�9b�

Applying Eq. �9a� to the left side of Eq. �9b� and collect-
ing the terms related to �t

2 �t1
Fj

�1� on the both sides, we can
rewrite Eq. �9b� as

�t2
f j

eq + D1j��1 −
1

2�
� f j

�1�� +
�t

2
c j · �1Fj

�1�

= −
1

��t
f j

�2� +
�� − 1��t

2
�t1

Fj
�1�. �10�

Summing Eqs. �9a� and �10� over j and using Eqs. �4� and
�7�, we obtain

�t1
� + �1 · B��� = F�1�, �11�

�t2
� + �1 · ��1 −

1

2�
�	

j

c j f j
�1�� +

�t

2
�1 · �	F�1�B�����

=
�� − 1��t

2
�t1

F�1�. �12�

Using Eqs. �9a�, �4�, and �7�, we have

	
j

c j f j
�1� = − ��t	

j

c j�D1j f j
eq − Fj

�1��

= − ��t��t1
B��� + �1 · C��� − 	F�1�B�����

= − ��t�B�����t1
� + C0���� · �1� + cs

2�1D���

− 	F�1�B����� . �13�

If we take C0����=B����B����, then it follows from Eqs.
�13� and �11� that

	
j

c j f j
�1� = − ��tB������t1

� + �1 · B��� − F�1��

− ��t��1 − 	�F�1�B���� + cs
2�1D����

= − ��t��1 − 	�F�1�B���� + cs
2�1D���� . �14�

So, substituting Eq. �14� into Eq. �12�, we obtain

�t2
� = �1 · �cs

2�� −
1

2
��t��1D����

– �t�1 · ��	 − �� −
1

2
��F�1�B�����

+
�� − 1��t

2
�t1

F�1�. �15�

Combining Eqs. �15� and �11� and taking

� = cs
2�� −

1

2
��t , �16�

we have

�t� + � · B��� = � · �� � D����

+ F – �t � · ��	 − �� −
1

2
��FB�����

+
�� − 1�
�t

2
�t1

F . �17�

Now, taking 	= ��−1/2�
� and �=1 to remove the two addi-

tional terms in Eq. �17�, the NCDE �1� is exactly recovered
to order O�
2�.

Remark 1. It can be found from the analysis above that for
the standard LBGK ��=0� or for that ��1, there must be an
additional term ��−1���t /2�
�t1

F in Eq. �17�. This term can
also be deleted by using a redefinition for the convective flux
as suggested in literature �39�. However, the redefinition
scheme cannot be used directly for the NCDE �1� since it is
implicit when F is a nonlinear function of �, while the
scheme here ��=1� can since the explicit difference scheme
can be used for computing �tFj�x , t� �21�. It should be noted
that in the standard LBGK model there is no need for the
redefinition for CDE coupled with weakly compressible fluid
flow, and the detailed analysis can be found in Ref. �5�.

Remark 2. It should be noted that when B=0, Eq. �1�
becomes the nonlinear diffusion equation with a source term.
In this case, C���=cs

2D���I and the equilibrium and source
distribution functions are of simple forms

f j
eq = � j�� +

��D��� − ��I�:�c jc j − cs
2I�

2cs
2 �

= � j�� +
�D��� − ���c j

2 − cs
2d�

2cs
2 � ,

Fj = � jF , �18�

where d is the dimensions. Now the DdQ�2d+1� lattice
model can also be used, which leads to a simpler LBGK
model. For this model f j

eq is not of the form of Eq. �18�, and
from Eq. �4� it can be easily obtained that f 0

eq=�
−2d�1D���, f j

eq=�1D��� , j�0, where �0+2d�1=1. Fur-
thermore, for the case D���=�, f j

eq in Eq. �18� reduces to
the simplest form f j

eq=� j�, the same as Fj.
Remark 3. For the case B�0, we can take C0��� such

that �C0������=�B�����B�����d�. When B and D are
known, the different CDEs can be obtained.

Remark 4. Rewrite Eq. �1� as

�t� + � · B��� = � · ��̃ � �� + F�x,t� , �19�

where �̃=�D����.
Using above LBGK model to solve Eq. �19�, we have

f j
eq = � j�� +

c j · B

cs
2 +

C0:�c jc j − cs
2I�

2cs
4 � �20�

and
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�̃ = cs
2�� −

1

2
��t . �21�

This leads to another LBGK scheme for Eq. �1�. So, if
D�����, two LBGK schemes for Eq. �1� can be derived.
Scheme 1: Eqs. �2� and �3� with Eq. �16�; scheme 2: Eqs. �2�
and �20� with Eq. �21�.

III. LBGK MODEL FOR COMPLEX NCDE

Almost all of the existing LBGK models are designed for
real evolutionary equations. However, from the Chapman-
Enskog analysis in above section, we can see that the func-
tions in NCDE and related distribution function can be both
real and complex without affecting the results.

Following the idea of solving the complex evolutionary
equations by LBGK model in Ref. �38�, we can define the
complex variables as

f j = gj + ihj, f j
eq = gj

eq + ihj
eq,

Fj = Gj + iHj, w =
1

�
= w1 + iw2, �22�

where i2=−1. Then we can rewrite Eq. �2� as

gj�x + c j�t,t + �t� = gj�x,t� − w1�gj�x,t� − gj
eq�x,t��

+ w2�hj�x,t� − hj
eq�x,t�� + �tGj�x,t�

+
��t2

2
�tGj�x,t� ,

hj�x + c j�t,t + �t� = hj�x,t� − w2�gj�x,t� − gj
eq�x,t��

− w1�hj�x,t� − hj
eq�x,t�� + �tHj�x,t�

+
��t2

2
�tHj�x,t� ,

j = 0, . . . ,b − 1. �23�

Equation �23� is the implemental version of the LBGK
model �2� for complex NCDE. It should be noted that Eq.
�23� reflects the coupling effect of the real part and the
imaginary one of the unknown function in complex NCDE
through the complex-valued relaxation time in a natural way.
In fact, let �=�1+ i�2 ,�=�1+ i�2, then from Eqs. �16� and
�22� we have

�1 =
�1

cs
2�t

+
1

2
, �2 =

�2

cs
2�t

, w1 =
�1

�1
2 + �2

2 , w2 = −
�2

�1
2 + �2

2 .

�24�

From Eq. �24�, we can see that if � is a complex variable,
that is, �2�0, then w2�0. At this time, Eq. �23� is coupled
and �1

1
2 is not necessary. Otherwise, �2=w2=0, w1= 1

�1
,

and Eq. �23� is decoupled.

IV. SIMULATION RESULTS

To test the LBGK model proposed above, numerical
simulations of some CDEs are performed. In all simulations,
if not specified, we use the nonequilibrium extrapolation
scheme proposed by Guo et al. �40� to treat the boundary
condition except for the periodic one, and the initial and
boundary conditions of the test problems with analytical so-
lutions are determined by their analytical solutions. The
D1Q3 and D2Q9 LBGK models are used to simulate the 1D
and 2D test problems, respectively, and the explicit differ-
ence scheme �tFj�x , t�= �Fj�x , t�−Fj�x , t−�t�� /�t, is used
for computing �tFj�x , t�. The following global relative error
is used to measure the accuracy:

E =

	
j

���x j,t� − �*�x j,t��

	
j

��*�x j,t��
, �25�

where � and �* are the numerical solution and analytical
one, respectively, and the summation is taken over all grid
points.

For comparison we use two LBGK models to simulate the
problems with analytical solutions. One is the model using
standard LBGK evolution equation ��=0� and the other is
the proposed model ��=1�, which are denoted by methods 1
and 2, respectively. Method 2 is used to simulate the rest of
the problems.

Since the accuracy tests of some complex nonlinear equa-
tions have been made in Refs. �37,38�, here we only test the
double soliton collision of 1D NLSE �41� and the X and
target waves of 2D cubic CGLE �42�. The other test prob-
lems are all real equations.

Example 4.1. The double soliton collision of 1D NLSE
�41�

iut + uxx + 2�u�2u = 0, �26�

with the initial condition

u�x,0� = 	
j=1

2

exp�1

2
icj�x − xj��sech�x − xj� , �27�

where c1, x1, c2, x2 are parameters.
In simulations, we set c1=4, x1=−10, c2=−4, x2=10 as in

Ref. �41�. The simulation is conducted with periodic bound-
ary condition in �−25,25� with �x=0.01, �t=0.0001. The
results are shown in Fig. 1. It can be found that the LBGK
results are is in excellent agreement with those in Ref. �41�.

Example 4.2. The X and target waves of 2D cubic CGLE
�42�

ut = ��x�u + �1 + i���2u − �1 + i���u�2u , �28�

with periodic boundary condition and random initial condi-
tion, where ��x ,y�=1− 1

2�2�x2+y2�, � is the Einstein fre-
quency.

It has been found that when �=0, 0.01 and 0.02, the
spiral, X and target waves are formed, respectively, for
CGLE �28� with �=3.5 and �=−0.34 �42�. Here we use the
LBGK model to reproduce the X and target waves.
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In the simulation the initial condition is taken as
Re�u�x ,y ,0��=10−6rand�¯�, Im�u�x ,y ,0��=10−6rand�¯�,
where rand�¯� is a random function in C��. The simulation
results are performed on �−100,100�� �−100,100� with �x
=1.0 and �t=0.01. The results are shown in Figs. 2 and 3. It
is seen that the numerical results in Figs. 2 and 3 agree well
with those in Ref. �42�. It should be noted that we have not
reproduced the spiral wave for �=0 by using the LBGK
model with the initial condition above.

Example 4.3. The BFE in two dimensions �43�

ut + au�ux − b�uxx + uyy� − ku�1 − u�� = 0, �  1 �29�

with the analytical solution

u�x,y,t� = 1

2
+

1

2
tanh�A�x + y − �t���1/�

, �30�

where A=− a�
4b��+1� , �= a2+2bk��+1�2

a��+1� , a, b, k, and � are real con-
stants.

For Eq. �29�, B�u�= � a
�+1 ,0�Tu�+1, so we can take C0 such

that �C0�u��11= a2

2�+1u2�+1, �C0�u����=0, �� ,��� �1,1�. The
simulations are performed on �−1,2�� �−1,2� for different
parameters by using methods 1 and 2, respectively, for com-
parison. The effects of the parameters a, b and c on the
methods are mainly studied since those of the parameters �
and k are relatively small. Here we set �=1.5 and k=1. The

global relative errors at t=0.5 and t=1 on a 300�300 grid
for different parameters are listed in Table I. From the table it
can be found that in most of the cases the errors at t=1 are
smaller than those at t=0.5, and when the parameters other
than the time step are fixed, the errors decrease as the time
step decreases or the particle speed c increases. It can also be
found that method 1 is a little more accurate than method 2,
which shows that for the test case here the modification of
evolution equation does not bring the expected effect. The
numerical solutions by method 2 together with the analytical
ones at x=0.5 for a=6, b=0.05, c=10 and different time
steps are plotted in Fig. 4.

To test the accuracy of the two methods, the global rela-
tive errors and global maximum errors are plotted in Fig. 5 at
time t=0.5 and t=1 with different resolutions, range from
�x=1 /20 to 1/160 and c=5 to 40, for a=4.0 and b=0.1. For
method 1 the orders of global relative errors are found to be
1.9123, 1,9525, 1.9653 for t=0.5, and 2.0203, 1.9809,
1.9750 for t=1, respectively, while for method 2 the orders
are 1.9364, 1.9539, 1.9672 for t=0.5, and 2.0307, 1.9826,
1.9765 for t=1, respectively. It is shown that both of the two
methods for above BFE are of the second order of accuracy.
From Table I, Figs. 4 and 5 it can be seen that the LBM
works well for the BFE.

Example 4.4. The generalized NHCE in two dimensions
�43�
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FIG. 1. �Color online� Collision of two solitons of 1D NLSE at different times.
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ut − ��u��xx − ��u��yy − u + u� = 0, �  1 �31�

with the analytical solution

u�x,y,t� = 1

2
−

1

2
tanh� � − 1

2��2�
�x + y − �2�t���−1/��−1�

,

�32�

where � and � are real constants.
For Eq. �31�, B=0, D�u�=u�, and C=cs

2u�I, thus follow-
ing Eq. �18�, Eq. �3� is simplified as for scheme 1

f j
eq = � ju�1 +

�u�−1 − 1��c j
2 − 2cs

2�
2cs

2 �, Fj = � j�u − u��

�33�

with cs
2��− 1

2 ��t=�, while for scheme 2
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FIG. 2. �Color online� X wave �left� and target wave �right�.
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at the center of the simulated system for �=0.01 �bottom� and 0.02
�top�, corresponding to the X and target patterns, respectively.
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f j
eq = � ju, Fj = � j�u − u�� �34�

with cs
2��− 1

2 ��t=��u�−1.
The simulations are performed on �0,1�� �0,1� for dif-

ferent parameters by using methods 1 and 2 for comparison,
and for each method, schemes 1 and 2 are used, respectively.
The global relative errors on a 100�100 grid at t=1 for
different parameters are listed in Table II. Similarly, from the
table it can be found that in most of the cases when the
parameters other than the time step are fixed, the errors de-
crease obviously as the time step decreases or the particle
speed c increases. We find that method 2 is more accurate

than method 1, but the difference is small. However, it is
worthy noticing that for the case of �=0.01 the errors do not
decrease but increase as the time step decreases or c in-
creases.

To test the accuracy of the two methods, the global rela-
tive errors and global maximum errors are plotted in Fig. 6 at
time t=1 in different resolutions, from �x=1 /10 to 1 /640
and c=1 to 64, for �=1.2 and �=0.01. It is found that both
of the two methods for the NHCE �31� are of second-order
accuracy on the finer grids. The order of global relative er-
rors by method 1 increases from 1.5828 to 1.9744 for
scheme 1 and from 1.8163 to 1.9902 for scheme 2, respec-

TABLE I. Global relative errors for �=1.5 and k=1.0 at t=0.5 and t=1 ��1� t=0.5, �2� t=1; M1: method 1, M2: method 2�.

b

c=10 c=20

a=2 a=4 a=6 a=2 a=4 a=6

b=0.05 �1� M1 2.5198�10−4 1.0133�10−3 1.3969�10−3 6.5987�10−5 2.5215�10−4 3.3463�10−4

M2 2.8787�10−4 1.0360�10−3 1.4093�10−3 8.6553�10−5 2.6398�10−4 3.4109�10−4

�2� M1 3.6216�10−4 7.2002�10−4 6.8001�10−4 8.5873�10−5 1.7170�10−4 1.5980�10−4

M2 4.0733�10−4 7.3538�10−4 6.8605�10−4 1.0916�10−4 1.7942�10−4 1.6276�10−4

b=0.10 �1� M1 3.7744�10−4 1.4628�10−3 2.3889�10−3 9.2339�10−5 3.7426�10−4 5.8634�10−4

M2 3.4131�10−4 1.5000�10−3 2.4110�10−3 7.6085�10−5 3.9306�10−4 5.9743�10−4

�2� M1 2.8280�10−4 1.0924�10−3 1.1155�10−3 6.6644�10−5 2.6959�10−4 2.7083�10−4

M2 3.1880�10−4 1.1176�10−3 1.1256�10−3 8.9309�10−5 2.8206�10−4 2.7573�10−4

b=0.50 �1� M1 6.9318�10−4 1.9134�10−3 2.8168�10−3 1.9734�10−4 4.7911�10−4 6.5722�10−4

M2 6.6438�10−4 1.8769�10−3 2.8098�10−3 1.8236�10−4 4.6219�10−4 6.6020�10−4

�2� M1 4.3357�10−4 1.1099�10−3 1.5833�10−3 1.1457�10−4 2.6628�10−4 3.4373�10−4

M2 4.2175�10−4 1.1103�10−3 1.5876�10−3 1.0722�10−4 2.6690�10−4 3.4586�10−4

b=1.00 �1� M1 5.8622�10−4 1.6295�10−3 3.1786�10−3 1.6094�10−4 4.1877�10−4 7.4067�10−4

M2 5.7306�10−4 1.6085�10−3 3.1543�10−3 1.5438�10−4 4.0948�10−4 7.3237�10−4

�2� M1 3.0302�10−4 9.4370�10−4 1.7704�10−3 8.8190�10−5 2.3428�10−4 4.2510�10−4

M2 2.8400�10−4 9.3798�10−4 1.7736�10−3 7.7845�10−5 2.3261�10−4 4.2834�10−4

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

y

u(
0.

5,
y)

FIG. 4. �Color online� Comparison of analytical solutions with
numerical solutions at x=0.5 for different time steps: t=0, 0.25, 0.5,
and 0.75. Solid lines: analytical solutions; symbols: numerical ones.

1.2 1.4 1.6 1.8 2 2.2
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−log ∆ x

lo
g

E
rr

or

RE1 at t=0.5
ME1 at t=0.5
RE2 at t=0.5
ME2 at t=0.5
RE1 at t=1.0
ME1 at t=1.0
RE2 at t=1.0
ME2 at t=1.0

FIG. 5. �Color online� Accuracy test at t=0.5 and 1 for �=1.5,
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tively, as the grid resolution increases, while the order of
global relative errors by method 2 increases from 1.5272 to
1.9694 for scheme 1 and from 1.8077 to 1.9848 for scheme
2, respectively. Clearly the accuracy of scheme 2 is generally
lower than that of scheme 1, but the stability of the former is
much better than that of the latter. From Table II and Fig. 6 it
can be seen that the LBM also works well for NHCE. It
should be pointed out that for the wider range of parameters,
say larger computation region or smaller �, scheme 1 may
often fail to work, while scheme 2 can still work well due to
its good numerical stability which might result from the in-
fluence of nonlinear diffusion could be suppressed by using

Eq. �21� to adjust relaxation times. What makes the differ-
ence between schemes 1 and 2 needs to be studied further.

Example 4.5. We consider the two-dimensional SGE �44�

utt = uxx + uyy − sin�u� , �35�

in the spacial region �= ��x ,y� �−a�x�a ,−b�y�b�. The
boundary conditions associated with Eq. �35� impose a zero
gradient along the boundary � of �,

ux = 0, x = � a; uy = 0, y = � b , �36�

while the initial conditions are given by

u�x,y,0� = f�x,y�, ut�x,y,0� = g�x,y� . �37�

Note that Eq. �35� is different from the DE with a source
term since it contains utt. Using the idea in Ref. �38�, Eq. �3�
can be taken as

f j
eq�x,t� = � j�ut +

cs
2�u − ut�I:�c jc j − cs

2I�
2cs

4 �
= � j�ut +

�u − ut��c j
2 − 2cs

2�
2cs

2 � , �38�

such that

	
j

f j = 	
j

f j
eq = ut, 	

j

c j f j
eq = 0, 	

j

c jc j f j
eq = cs

2uI

�39�

with cs
2��− 1

2 ��t=1. We use the difference scheme to com-
pute ut: u�x , t+�t�=�t	 j f j�x , t+�t�+u�x , t�.

TABLE II. Comparison of global relative errors at t=1. ��1� �=1.2, �2� �=1.5; M1: method 1, M2: method 2. ‘Blanks’ mean that the
scheme is divergent.�

�

Scheme l Scheme 2

c=10 c=20 c=100 c=10 c=20 c=100

�=0.01 �1� M1 4.6981�10−5 7.7092�10−5 4.1524�10−5 9.7853�10−5

M2 3.8456�10−5 4.0878�10−5 4.1133�10−5 1.0130�10−4

�2� M1 1.8458�10−5 2.8091�10−5 1.3148�10−5 3.1951�10−5

M2 1.2584�10−5 1.5588�10−5 1.2306�10−5 3.3037�10−5

�=0.05 �1� M1 6.2575�10−5 3.2158�10−5 1.6827�10−4 7.8142�10−5 1.3220�10−5

M2 7.2409�10−5 1.6379�10−5 1.8296�10−4 6.3562�10−5 1.6272�10−5

�2� M1 3.8496�10−5 1.4609�10−5 1.3635�10−4 3.6084�10−5 5.7715�10−6

M2 4.8209�10−5 8.4623�10−6 1.4843�10−4 3.6193�10−5 7.1173�10−6

�=0.10 �1� M1 1.1843�10−4 3.8315�10−5 8.7176�10−6 3.1122�10−4 8.9968�10−5 9.2293�10−6

M2 1.3169�10−4 3.5383�10−5 1.0990�10−5 3.2520�10−4 9.0404�10−5 6.9615�10−6

�2� M1 9.2449�10−5 2.1623�10−5 3.0190�10−4 6.9183�10−5 6.6177�10−6

M2 1.0211�10−4 2.2794�10−5 3.1217�10−4 7.2337�10−5 5.2568�10−6

�=1.00 �1� M1 3.1222�10−4 1.0050�10−4 1.9763�10−5 1.0016�10−3 3.6451�10−4 4.5857�10−5

M2 3.0901�10−4 9.8807�10−5 1.9437�10−5 9.9961�10−4 3.6319�10−4 4.5538�10−5

�2� M1 1.8651�10−4 6.3352�10−5 1.3865�10−5 8.1274�10−4 2.8591�10−4 3.4819�10−5

M2 1.8478�10−4 6.2805�10−5 1.3628�10−5 8.1138�10−4 2.8500�10−4 3.4583�10−5
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FIG. 6. �Color online� Accuracy test for the two schemes at t
=1 for �=1.2 and a=0.01. S1: scheme 1; S2: scheme 2.
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In simulations, three cases are considered and the wave
parameters are taken as �=4, �=4.13 and �=1 /0.436 as in
Ref. �44� for comparison. The grid and time steps are set to
be �x=0.05 and �t=0.001, respectively, for all cases.

For the particular case of circular ring solitons, we choose

f�x,y� = � arctan exp�3 − �x2 + y2�, g�x,y� = 0, �40�

over the 2D domain −14�x, y�14, which was also used in
Ref. �44�. The simulation results via the LBGK model at

−10 −5 0 5 10

−10

−5

0

5

10

t=0

x

y

−10 −5 0 5 10

−10

−5

0

5

10

t=4

x

y

−10 −5 0 5 10

−10

−5

0

5

10

t=8

x

y

−10 −5 0 5 10

−10

−5

0

5

10

t=11.5

x

y

−10 −5 0 5 10

−10

−5

0

5

10

t=15

x

y

FIG. 7. Collision of one ring
solitons: the function sin�u /2�
�from top to bottom: t=0, 4, 8,
11.5, and 15�.
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t=0, 4, 8, 11.5, and 15 are given in terms of sin�u /2� in
Fig. 7.

Further, when collisions of two circular solitons are con-
sidered, we choose the following standard settings �44�:

f�x,y� = �	
j=1

2

arctan exp���4 − ��x + xj�2 + �y + yj�2�� ,

g�x,y� = �	
j=1

2

sech���4 − ��x + xj�2 + �y + yj�2�� , �41�

where −30�x�10, −21�y�7, ��xj ,yj��= ��3,7� , �17,7��.
Numerical simulations are presented in Fig. 8 in terms of
sin�u /2� at t=0, 2, 4, 6, and 8, respectively.
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Finally, for collisions of four circular solitons, as in Ref.
�44� we take that

f�x,y� = �	
j=1

4

arctan exp���4 − ��x + xj�2 + �y + yj�2�� ,

g�x,y� = �	
j=1

4

sech���4 − ��x + xj�2 + �y + yj�2�� , �42�

where −30�x, y�10, ��xj ,yj��= ��3,3� , �3,17� , �17,3� ,
�17,17��. Numerical simulations are plotted in Fig. 9 in
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terms of sin�u /2� at t=0, 2.5, 5, 7.5, and 10, respectively.
From Figs. 7–9 it can be found that the numerical results

here are in excellent agreement with those in Ref. �44�.

V. CONCLUSION

In the present work, we have developed a unified LBGK
model for nD nonlinear convection and isotropic-diffusion
equation, and two LBGK schemes are derived from the
model for the NCDE with a nonlinear diffusion term. Unlike
traditional numerical methods which solve for macroscopic
variables, the model has the advantages of standard LBGK
model, which are borrowed from kinetic theory, such as lin-
earity of the convection operator in velocity space, simplicity
and symmetry of scheme, ease in coding and intrinsical par-
allelism �3�. Detailed numerical tests of the proposed model
and that using standard LBGK evolution equation are carried
out for different types of convection-diffusion-like equations,
including the 1D nonlinear Schrödinger equation, 2D com-
plex Ginzburg-Landau equation, 2D Burgers-Fisher equa-
tion, 2D NHCE, and 2D sine-Gordon equation. It is found
that the simulation results agree well with the analytical and
numerical solutions reported in previous studies, which
shows that the LBM has potentials in simulating NCDE. It is
also found that the stability of scheme 2 for NHCE is better
than that of scheme 1, while the accuracy of scheme 2 is a

little lower than that of scheme 1. Unlike scheme 1 in which
a fixed relaxation time is used, the relaxation time in scheme
2 varies with position x and time t according to Eq. �21�, thus
the influence of nonlinear diffusion might be suppressed by
using adjustable relaxation times. What makes the difference
between schemes 1 and 2 needs to be studied further. As
pointed out in Refs. �37,38�, in order to attain better accuracy
the LB model for complex equations requires a relatively
small time step �t and the proper range is from 10−4 to 10−5.

The idea of the proposed model can be directly applied to
derive the complex-valued versions of other existing LB
models for nonlinear evolutionary equations by utilizing
complex-valued distribution functions and a relaxation time,
and may be used to derive the corresponding LB model for
NCDE with anisotropic diffusivity. Nevertheless, some im-
portant issues, such as how to improve the accuracy, effi-
ciency and stability of complex-valued LB models or the LB
models for highly nonlinear evolutionary equations need fur-
ther studies.
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